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Abstract—This paper deals with the identification of nonlinear
systems using multi-kernel approach. In this context, we have
improved the Support Vector Regression (SVR) method in order
to identify nonlinear complex system. Our idea consists in
dividing the regressor vector in several blocks, and, for each
one a kernel function is used. This blockwise SVR approach
is called Support Kernel Regression (SKR). Furthermore, we
have proposed two methods SKR(lin-rbf) and SKR(rbf-rbf). In
these two methods we have divided the regressor into two Blocks.
In the SKR(lin-rbf) based approach, the linear kernel and the
Gaussian kernel are used, respectively, to identify the influence
of the first block and of the second block on the model. However,
in the SKR(rbf-rbf) approach two gaussian kernels are used. An
example is presented for qualitative comparison with the classical
SVR approach based on a single kernel function. The results
reveal the accuracy and the robustness of the obtained model
based on our proposed approaches.

Keywords—Support Vector Regression; Support Kernel Regres-
sion; Nonlinear System Identification; Kernel Function

I. INTRODUCTION

Recently, estimation techniques based on regularization and
kernel methods play an important role. In this context, we
mention the regression technique based on Support Vector
Machines (SVM). SVM have received a great attention to
be used to deal with this problem [1], [2]. These approaches
obtain system models based on intelligent behavior and learn
automatically from previous experiences.
The SVM was first proposed by Vapnik [3] in order to ob-
tain maximum margin separating hyperplanes in classification
problems but this technique has become a general learning
theory and is applied in large a field of applications [1],
[4], [5], [6], [7], [8], · · · . A comprehensive description of
this method for classification and regression problems can be
found in [9] and [10], respectively. The basic idea is to map
linear inseparable input data into a high dimensional linear
separable feature space via a nonlinear mapping technique
(kernel function) and to carry out linear classification or
regression in feature space.
In this paper, we have been interested in the problem of non
linear system identification based on SVM. This approach
becomes inefficient when the system complexity becomes
more and more important. In this context, the multi-kernel

approach seems to be potential to deal with such problems.
In literature, several multi-kernel training based algorithms
have been presented. Diosan and al [11] developed an Com-
bined Kernels (ECKs). They considered a combination of
multiple kernels and they used a Genetic algorithm (GA) for
evolving these weights. This approach is applied to solving
classification problems. They have compared their results to
those obtained by [12] with a combined kernel learnt with
convex methods (CCKs). In [13], the authors have proposed a
componentwise Least Squares Support Vector Machines (LS-
SVMs) for the estimation of additive models consisting of a
sum of nonlinear components.
On our part, we have proposed in [14] a new approach
called Least Squares Support Kernel Machines (LS-SKM). LS-
SKM method which is a variant of Least Squares Support
Vector Machines (LS-SVM) approach consists in dividing the
regression vector into several sub-vectors, and, for each one a
kernel function is used.
In this work, the proposed multi-kernel configuration is
adopted to Support Vector Machines (SVM). Therefore, a new
identification method called Support Kernel Regression (SKR)
has been investigated. The basic idea consists in dividing
the regressor on several blocks and for every one a kernel
function is used. Indeed, the suggested approach reflects the
fact that practical learning problems often involve multiple,
heterogeneous data sources. Therefore, this blockwise training
algorithm considers multiple kernels. Each kernel describes
a similarity measure between data having the same origin
or which sharing the common characteristics. In fact, this
approach succeeds to improve the identification performance
such as the accuracy of the elaborated model.
The outline of this paper is as follows: In Section 2, the
problem statement is given. In section 3, we review the
mathematical foundation of the SVR method. Section 4 intro-
duces the new method Support Kernel Regression (SKR) for
identification. In this part, first we present the context and the
motivations, second, we present the SKR approach. In Section
5, the effectiveness of the proposed SKR based algorithm is
presented through an illustrative example.

II. BLACK BOX SYSTEMS IDENTIFICATION BASED ON
SUPPORT VECTOR REGRESSION (SVR)

Black box models are based on measurement data. Both
model structure and model parameters are determined by using
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experimental data. In this context, very little prior knowledge
of the system behavior is exploited.
The steps of identification are illustrated in Figure 1. First,
input-output data of the system are collected to constitute the
training data samples {xi, yi}Ni=1. xi = (u(i − 1), · · · , u(i −
m1), y(i−1), · · · , y(i−n1)) is the regression vector at differ-
ent sampling instants and yi is the system output corresponding
to xi. m1 and n1 parameters represent, respectively, the input
regression order and the output regression order. Second, the
model structure is chosen. Then, the model parameters are
selected. It is, usually, solved by the application of linear
and nonlinear optimization technique. Finally, we make the
necessary tests to validate the obtained parameters. In this

Black box systems
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Fig. 1. Principle of black box systems identification.

work, we consider that the system is given by the following
input/output representation:

y(i) = ϕ(u(i− 1), · · · , u(i−m1), y(i− 1), · · · , y(i− n1))
= yi

(1)
We will consider, according to the representer theorem [15],
the assumption that every function can be described with a
kernel function. Indeed, it is the basic idea of the regression
based on SVR approach. This method uses a single kernel
function to describe the system behavior. To obtain a more
accurate model, a new method called ” Support Kernel Re-
gression (SKR) is proposed and developed in our work. The
basic idea is to divide the regressor vector xi in several blocks,
and, for each block a kernel function is adopted. More details
will be given in section IV.

III. SUPPORT VECTOR REGRESSION (SVR)

A. Linear Regression with ε-insensitive loss function

Suppose we are given the training data
{(x1, y1), · · · , (xN , yN )} ⊂ χ × R, where χ denote the
space of the input patterns. In ε − SV regression, the
objective is to find a function f(x) that has at most ε
deviation from the actually obtained target yi for all the
training data, and at the same time is flat as possible [10]. In
this case f(x) has the following form:

f(x) =< w, x > +b with w ∈ χ, b ∈ R (2)

where < ., . > denotes the dot product in χ. We can write
this problem as a convex optimization problem:

minimize 1
2∥w∥

2

subject to

{
yi− < w, x > −b ≤ ε
< w, x > +b− yi ≤ ε

(3)

The above convex optimization problem is feasible in cases
where f actually exists and approximates all pairs (xi, yi) with
ε precision. Sometimes, some errors are allowed. Introducing
slack variables ξi, xi∗i to cope with otherwise infeasible
constraints of the optimization problem (3), the formulation
becomes:

minimize 1
2∥w∥

2 + C
∑N

i=1(ξi + ξ∗i )

subject to

{
yi− < w, x > −b ≤ ε+ ξi
< w, x > +b− yi ≤ ε+ ξ∗i

(4)

The constant C > 0 determines the trade-off between the
flatness of f and the amount up to which deviations larger
than ε are tolerated. This corresponds to dealing with a so
called ε-insensitive loss function described by

Lε(y) =

{
0 if |f(x)− y| ≤ ε
|f(x)− y| − ε otherwise

(5)

Figure 2 show the idea graphically. The problem is solved by

Fig. 2. The soft margin loss setting for a linear SVM.

minimizing the lagrangian L given by the following expres-
sion:

L := 1
2∥w∥

2 + C
∑N

i=1(ξi + ξ∗i )−
∑N

i=1(ηiξi + η∗i ξ
∗
i )

−
∑N

i=1 αi(ε+ ξi − yi+ < w, xi > +b)

−
∑N

i=1 α
∗
i (ε+ ξ∗i + yi− < w, xi > −b)

(6)
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η∗i , ηi, αi, α∗
i are lagrange multipliers The optimality

conditions are:

∂l
∂b = 0 7→

∑N
i=1(αi − α∗

i ) = 0
∂L
∂w = 0 7→ w −

∑N
i=1(αi − α∗

i ) = 0
∂l
∂ξi

= 0 7→ C − αi − ηi = 0
∂l
∂ξ∗i

= 0 7→ C − α∗
i − η∗i = 0

i = 1, · · · , N

(7)

Substituting these conditions into the equation (6) yields the
dual optimization:

maximize

{
1
2

∑N
i,j=1(αi − α∗

i )(αj − α∗
j ) < xi, xj >

−ε
∑N

i,j=1(αi + α∗
i ) +

∑N
i=1 yi(αi − α∗

i )

subject to
∑N

i=1(αi − α∗
i ) = 0 and αi, α

∗
i ∈ [0, C]

(8)
Thus

f(x) =

N∑
i=1

(αi − α∗
i ) < xi, x > +b (9)

B. Nonlinear SVR

In this case, we suppose that the equation of the function
presented in (2) that we will predict is described by the
following equation:

f(x) =< ϕ(x), x > +b (10)

Using the kernel trick, we obtain the following optimization
problem:

maximize

{
1
2

∑N
i,j=1(αi − α∗

i )(αj − α∗
j )k(xi, xj)

−ε
∑N

i,j=1(αi + α∗
i ) +

∑N
i=1 yi(αi − α∗

i )

subject to
∑N

i=1(αi − α∗
i ) = 0 and αi, α

∗
i ∈ [0, C]

(11)
Solving αi, α∗

i and b using KKT (Kurash-Kuhn-Tucker) con-
ditions, the regression function of (9) becomes

f(x) =

N∑
i=1

(α∗
i − αi)k(xi, x) + b (12)

We note that in the nonlinear setting, the optimization problem
corresponds to finding the flattest function in feature space, not
in the input space.

C. Loss Function

In literature several Loss Function are used [9], [10] such
as quadratic loss function, ε-insensitive loss function, Huber
loss function and Laplace loss function (figure 3).
The quadratic cost is optimal in a Maximum Likelihood (ML)
sense, when the noise is Gaussian, whereas the linear cost is
optimal for exponential noise. The use of the ε-Huber Loss
Function has the ability to deal simultaneously with different
kinds of noise. The use of ε-insensitive is not appropriate when
Gaussian noise can be present in the data, whereas a Quadratic
Loss Function does not produce sparse solutions [9].

Table I summarizes these loss functions [16]:

(a)  Quadratic (b)  Laplace

(c)  Huber (d)  e-insensitive 

Fig. 3. Loss Function.

TABLE I. MOST POPULAR LOSS FUNCTIONS

loss function
Laplacian c(ξ) = |ξ|.
Gaussian c(ξ) = 1

2 ξ
2.

Polynomial c(ξ) = 1
p |ξ|

p.

Huber’s robust loss c(ξ) =

{
1
2σ ξ2 si |ξ| ≤ σ,
|ξ| − σ

2 sinon.

Piecewise polynomial c(ξ) =

{
1

pσp−1 (ξ)p si |ξ| ≤ σ,

|ξ| − σ p−1
p sinon.

ϵ-insensitive c(ξ) = |ξ|ε.

D. Problem of data distribution

The formulation of the model output based on SVR ap-
proach is given as a sum of term k(xi, xj) weighted by the
lagrange multipliers (α∗

i − αi), as given in (12). Every term
describe a similarity measure between those data (xi, xj).
This assumption has the disadvantage of considering that all
the terms constituting the regressor have the common origin.
Therefore, it does not reflect the reality of things. For that, In
this work, we will focus on improving the above formulation.
We recall, first, that the kernel function considers a scalar
product in the new feature space. In this space, the kernel
function characterizes a certain similarity k(xi, xj) between
two data xi and xj in initial space, as it is shown in the
following kernel matrix (13).

k(x1, x1) k(x1, x2) · · · k(x1, xn)
k(x2, x1) k(x2, x2) · · · k(x2, xn)

...
...

. . .
...

k(xn, x1) k(xn, x2) · · · k(xn, xn)

 . (13)

The data xi is a vector, constituted by p terms. These terms,
may be heterogeneous and having different origins. At this
stage, we thought to divide the regression vector in several
sub-vectors, and in this case, the search for similarity between
two vectors is replaced by a sum of similarities between each
two sub-vectors forming the database. This idea is applied
to SVR approach, and consequently, a new approach called
Support Kernel Regression (SKR), is proposed and applied
for the identification of complex nonlinear systems.

IV. SUPPORT KERNEL REGRESSION (SKR)

A. Blockwise identification

Adopting our previously announced idea, we assume that
each training data xi will be decomposed on m sub-vectors
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x1,i, x2,i, · · · , xm,i as follows:

xi =


x1,i

x2,i

...
xm,i

 . (14)

Figure 4 depicts this graphically: with qj represent the dimen-
sion of the sub-vector xqj and satisfying:

m∑
j=1

qj = q,

where q is the dimension of the entire initial regressor xi.

1i

ix   =

x

2i
x

3i
x

(m-1)i
x

(m-2)i
x     

mi
x

1,1ix

q1,1ix

1,mix

qm,mix

1ix =

mix =

Fig. 4. Technique de rgression.

Thereafter, instead of using a single function φ adopted in
SVR approach, we assume that the system output is expressed
by several weighted functions φ1, · · · , φm. These functions
are used to approximate the system output as follows:

y =<

 w1

...
wm

 ,

 a1φ1(x1)
...

amφm(xm)

 > +b. (15)

We consider the input space χ will be associated with m differ-
ent feature spaces F1, · · · , Fm using functions: φ1, · · · , φm.
We consider, also, that w = (w1, · · · , wm) and x =
(x1, · · · , xm) ∈ Rq1+···+qm .
Based on these assumptions, the approach SKR will be defined
by the following optimization problem:

min
{

1
2∥w1i∥2 + · · ·+ 1

2∥wmi∥2 + C
∑N

i=1(ξi + ξ∗i )

subject to


yi− < w1i, ϕ1i(x1i,i) > − · · ·
− < wmi, ϕmi(xmi,i) > −b ≤ ε+ ξi
< w1i, ϕ1i(x1i,i) > + · · ·+
< wmi, ϕmi(xmi,i) > +b− yi ≤ ε+ ξ∗i

(16)
The corresponding lagrangian involving the dual variables αi

and ηi is, thus, described as follows:

L := 1
2∥w1i∥2 + · · ·+ 1

2∥wmi∥2C
∑N

i=1(ξi + ξ∗i )

−
∑N

i=1(ηiξi + η∗i ξ
∗
i )−

∑N
i=1 αi(ε+ ξi − yi

+ < w1i, ϕ1i(x1i,i) > + · · ·+ < wmi, ϕmi(xmi,i) > +b)

−
∑N

i=1 α
∗
i (ε+ ξ∗i + yi− < w1i, ϕ1i(x1i,i) >

+ · · ·+ < wmi, ϕmi(xmi,i) > −b),
(17)

with η∗i , ηi, αi, α
∗
i are Lagrange multipliers.

Optimality conditions are:

∂l
∂b = 0 7→

∑N
i=1(αi − α∗

i ) = 0,
∂L
∂w1i

= 0 7→ w1i −
∑N

i=1(αi − α∗
i ) = 0,

...
∂L

∂wmi
= 0 7→ wmi −

∑N
i=1(αi − α∗

i ) = 0,
∂l
∂ξ∗i

= 0 7→ C − α∗
i − η∗i = 0,

∂l
∂ξi

= 0 7→ C − αi − ηi = 0,

i = 1, · · · , N.

(18)

max


1
2

∑N
i,j=1(αi − α∗

i )(αj − α∗
j )(ku(x1i,i, x1j,j)

+ · · ·+ kmi(xmi,i, xmj,j))

−ε
∑N

i,j=1(αi + α∗
i ) +

∑N
i=1 yi(αi − α∗

i ),

sc
∑N

i=1(αi − α∗
i ) = 0 and αi, α

∗
i ∈ [0, C].

(19)
Solve αi, α∗

i and b using KKT (Kurash-Kuhn-Tucker) condi-
tions. In this new approach, the proposed regression function
is given by the formulation (20):

y(x) =
N∑
i=1

(α∗
i−αi)[k1i(x1i,i, x1j,j)+· · ·+kmi(xmi,i, xmj,j)]+b.

(20)

B. Blockwise separation: Examples

We have found that the model output SKR is given as a sum
of multiple weighted kernels. Each kernel describes a similarity
measure between the data which have the same origin or which
share the common characteristics. The suggested idea is based
on dividing the regressor in several sub-vectors (or blocks). In
this level, the question is according to which criterion has this
separation to be done?
We recall the assumption that the regressor is formed by: xi =
(u(i−1), · · · , u(i−m1), y(i−1), · · · , y(i−n1)). In this work
and since we are confronted with the problem of nonlinear
systems identification, we suggest that the separation of the
input vector in blocs can be done based on two criteria: the
sample time or the origin of every term which constitutes the
regressor. The first separation is based on the assumption that
the input and the output of the system at the iteration (k −
1), affect greatly, the model output at the current itration k
compared to other oldest previous itrations. For this reason,
we propose to use a kernel to identify the influence of the
sub-vector formed by u(k − 1) and y(k − 1) and an other
kernel for the rest of terms as shown in figure 5.
The second separation is based on the idea of dividing the

regressor according to the signal origin. Since we are interested
in the identification task, this division requires to take only
control signals in the first group and the delayed outputs in
the second group. Thereafter, for each group a kernel function
will be adopted. The figure 6 shows it graphically:

V. SIMULATIONS AND RESULTS

The identification diagram structure based on SKR is
shown in figure 7, yi is the actual system output and ŷi is
the estimated output. First, input-output data of the system are
collected to constitute the training data samples {xi, yi}Ni=1.
xi = (u(i− 1), · · · , u(i−m1), y(i− 1), · · · , y(i−n1)) is the
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ix   =

1ix =

2ix =

u(i-1)
u(i-2)

u(i-m )

y(i-1)
y(i-2)

y(i-n )

1

1

u(i-1)

u(i-2)

u(i-m )1

y(i-1)

y(i-2)

y(i-n )1

Fig. 5. Blockwise separation according to the time.

ix   =

1ix =

2ix =

u(i-1)
u(i-2)

u(i-m )

y(i-1)
y(i-2)

y(i-n )

1

1

u(i-1)
u(i-2)

u(i-m )1

y(i-1)
y(i-2)

y(i-n )1

Fig. 6. Blockwise separation according to command signal, delayed output.

regression vector at different sampling instant and yi = y(i) is
the system output corresponding to xi. Second, the technique
of regressor vector is used. Third, using the proposed SKR
algorithms (SKR(lin-rbf), SKR(lin-rbf)), we can build the off-
line model of the process. Finally, once the decision function
is generated, the necessary tests are made to validate the
chosen kernels and, also, the chosen kernel parameters. An

Plant
u(i) y(i)

+

-

Training
SKR

algorithmSK
R

 m
od

el

y(i)

Choice of  Kernel  
Function for every vector 

Technique 
of

regressor 
vector

x1,i

x m,i

Fig. 7. Identification structure based on SKR techniques.

example is selected to demonstrate the good performances of
our identification SKM based methods. For each example, we
have generated 600 patterns. The first 200 samples are used as
training set and the remaining 400 samples are used to validate
the obtained model. The computation time mentioned in tables
presents the resulted time during the training phase with 200
samples.

A. Example 1

In this session, we use the nonlinear system proposed in
[17], [18] to test our SKR modeling method. The identified
system is:

x1(i+ 1) = 0.1x1(i) + 2 u(i)+x2(i)
1+(u(i)+x2(i))2

x2(i+ 1) = 0.1x2(i) + u(i)(1 + u(i)2

1+x1(i)2+x2(i)2

y(i) = x1(i) + x1(i).

(21)

with an input excitation signal u(i) chosen as a random value
in [−1, 1].
In this example, the model input vector is formed
using xi = [u(i − 1) u(i − 2), · · · , u(i − m1), y(i −
1) y(i − 2), · · · , y(i − n1)]

T and as output yi = y(i).
This vector will be divided into two groups
x1i = [u(i − 1) u(i − 2), · · · , u(i − m1)]

T and
x2i = [y(i − 1) y(i − 2), · · · , y(i − n1)]

T . We have
already announced that in the SKR (lin-rbf) method, the
linear kernel and the Gaussian kernel were used, respectively,
to identify the influence of x1i and x2i on the model. And,
in the case of the SKR (rbf-rbf) based method two gaussian
kernels were adopted.
The total correlation coefficient R2

tot, the multiple correlation
coefficient R2

mult and the mean squares error (MSE) of the
training data are calculated in order to decide if the obtained
model is accepted or not. The model is acceptable if R2

tot,
R2

mult is close to one and the MSE is close to zeros [19].

TABLE II. KERNEL PARAMETERS VALUES FOR DIFFERENT METHODS

Method Kernels p1 p2 C

Quadratic Linear 1 ϕ 1000
SVR RBF ϕ 1.5 1000

Quadratic Linear-RBF 1 3 1000
SKR 2RBF 2 4 1010

ε-insensitive Linear 1 ϕ 1000
SVR RBF 2 ϕ 1020

ε-insensitive Linear-RBF 1 4 1000
SKR 2RBF 2 6 1000

To evaluate the proposed method performances, a compar-
ison with two methods which are: linear SVR and Gaussian
SVR will be done.

1) Input selection: It’s trivial that in kernel machines, the
size of model can increase when the model input dimension
χ increases. Hence, input selection becomes a crucial task
and it can, significantly, improve identification performance.
For that, we will study the effect of the dimension of the
regressor vector. Table III contains the values of R2

tot according
to the parameters m1 and n1. Based on these results, we
found that the largest value of R2

tot is obtained when m1 = 3
and n1 = 5. We notice also that if n1 and m1 becomes
great the regressor vector contains some terms haven’t any
effect on the obtained model, contrariwise, using too many
input terms may have undesirable effects on the identification
performance and some input variables may be redundant or
would become insignificant if some other input variables were
present in the model. For example, the case when m1 = 10
and n1 = 10, the R2

tot value, obtained based on quadratic SKR
(lin-rbf) approach, decreases to 92.2% whereas it increases to
94.6908% when m1 = 3 and n1 = 4 and to 95.0638% when
m1 = 3 and n1 = 5. Furthermore, when the model input
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TABLE III. EVOLUTION OF R2
tot ACCORDING TO THE PARAMETERS m1 , n1

.

Qaudratic SVR quadratic SKR quadratic SKR ε-insensitive SVR ε-insensitive SKR ε-insensitive SKR
rbf (lin-rbf) (rbf-rbf) rbf (lin-rbf) (rbf-rbf)

m1 = 2, n1 = 2 92.7216 92.8239 89.8832 92.7037 92.7114 89.4828
m1 = 2, n1 = 4 79.4039 92.9119 87.8897 81.8926 92.6129 88.3924
m1 = 2, n1 = 5 68.8681 92.1809 85.8544 74.7954 92.2881 86.7706
m1 = 3, n1 = 3 86.5163 92.8242 88.5696 86.8895 92.6100 88.8937
m1 = 3, n1 = 4 77.6569 94.6908 88.3008 78.4300 94.7375 88.9023
m1 = 3, n1 = 5 69.2320 95.0638 88.3919 76.7768 94.7368 88.3002
m1 = 4, n1 = 5 67.7843 94.8251 92.1101 76.2927 94.4972 92.5302
m1 = 4, n1 = 6 51.7861 92.8111 85.7681 69.2924 91.2839 85.8577
m1 = 10, n1 = 10 8.6875 92.2183 73.8575 23.2393 91.8490 81.1670

dimension χ (regressor vector dimension) becomes greater
the computation time becomes more and more important. For
example, it is equal to 7 second when we adopt the above
based approach with m1 = 3 and n1 = 5 and it is equal
to 8.1589 second when we adopt the same approach with
m1 = 10 and n1 = 10.

The fitness criterion performance adopting our proposed
methods: Quadratic SKR (lin-rbf) and ε-insensitive SKR (lin-
rbf) are approximately the same, it reachs 95.0638% (with
m1 = 3, n1 = 5), and 94.7375 (with m1 = 3, n1 = 4,
respectively. However, the identification results based on the
Gaussian quadratic SVR and on the Gaussian ε-insensitive
SVR present a considerable identification errors. In fact, the
best R2

tot value is obtained when m1 = 2, n1 = 2 and it is
equal to 92.9119 and 92.6129, respectively. The evolutions
of the system output y with those of the identified model
ŷ based on Quadratic SKR (lin-rbf) proposed approach are
compared. Figure 8 and Figure 9 presents respectively the
output system/model and the identification errors. It is noticed
that the modeling errors are very small compared to the results
obtained using the classical quadratic SVR method (Figure
11). This may allow to conclude that the model obtained
characterizes suitably the dynamic of the system and that our
suggested method improves the model precision.
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Fig. 8. Identification based on Quadratic SKR (lin-rbf), m1 = 3, n1 = 5.
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Fig. 9. Identification errors based on Quadratic SKR (lin-rbf), m1 = 3, n1 =
5.
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ŷ(k)

Fig. 10. Identification based on the gaussian Quadratic SVR, m1 = 2, n1 =
2.
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Fig. 11. Identification errors based on the gaussian Quadratic SVR, m1 =
2, n1 = 2.

Based on these results, we notice that the suggested ap-
proach quadratic SKR (lin-rbf) presents the best performance
in this complexe example. Therefore, in general two kernels
were sufficient for all complexe non linear system. In fact, we
have considered several systems and we have obtained that the
identification performances using two kernel were acceptable
in the almost taking examples.

2) Performance evaluation: In system identification, we
know that the fundamental goal is to produce a model that
captures the true dynamics and predicts accurately the output
for unseen data. The model identified using a finite training
datasets should not just have good accuracy over the training
datasets, but also it must be tested on an independent datasets
(ie. we search a method able to generalize). To guarantee this
objective, we have taken the following command signal: u(i) = 0.5sin(π2 + i

5π ) for i = 1 : 50
u(i) = sin(π2 + i

7π ) for i = 51 : 100
u(i) = sin(iπ2 ) for i = 101 : 150

(22)

Figure 12 presents the evolution of the system output and the
estimated output based on on Quadratic SKR (lin-rbf) method.
We remark that the model keeps track, suitably, the system
behavior.
To assess the effectiveness and robustness of the proposed
method, a white noise has been added to the system output.
We will discus the R2

tot values with different signal to noise
ratio (SNR) value given by the following definition:

SNR = 10log10(
µ2

σ2
) (23)

where µ is the signal mean and σ is the standard deviation of
the noise.
Table IV presents the total correlation coefficient values R2

tot
for different Signal-to-Noise Ratio (SNR) value. We remark
that, the models are less accurate because R2

tot values de-
creases gradually as the SNR decreases. Indeed, in the case
of quadratic SKR (lin-rbf) method, R2

tot is equal to 93.1945%
when SNR is equal to 40 dB and in the case of ε-insensitive
SKR (lin-rbf) method, this criterion is equal to 92.9460%.
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ŷ
(k

)

 

 
y(k)
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Fig. 12. Evolution of the system output y and the model output ŷ based on
Quadratic SKR (lin-rbf).

Nevertheless, Based on quadratic SKR (lin-rbf), this parameter
remainder equal to 84.2258% with a SNR reached 15 dB and
it is equal to 82.1785% adopting the ε-insensitive SKR (lin-
rbf) technique. This demonstrates clearly that our proposed
identification approach is robust.
We conclude, as well, that the quadratic SKR (lin-rbf) sug-
gested method presents the best performance compared to oth-
ers proposed methods (quadratic SKR (rbf-rbf), ε-insensitive
SKR (lin-rbf) and ε-insensitive SKR (rbf-rbf)) in the presence
or not of disturbance.

VI. CONCLUSION

The main contribution is to advocate the transition from
Support Vector Regression (SVR) that uses to train one kernel
to Support Kernel Regression (SKR) that uses to train multiple
kernel. Thus, based on multi-kernel approach, a new SKR
method was developed for regression and, on particularly,
applied to nonlinear system identification. The basic idea
consists in decomposing the regressor on several blocks and for
each bloc a kernel function is adopted. Several kernel configu-
ration were considered and consequently several method were
suggested: quadratic SKR (lin-rbf), quadratic SKR (rbf-rbf),
ε-insensitive SKR (lin-rbf) and ε-insensitive SKR (rbf-rbf).
These blockwise training algorithms, which combine several
type of kernel, contribute to good results and guarantee good
identification performance with its remarkable robustness on
disturbance rejection compared to performance obtained based
on quadratic SVR and ε-insensitive SVR methods based on
unique kernel function.
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